
RAMAKANT JOSHI
School of Studies in Pharmaceutical Sciences,
Jiwaji University, Gwalior

For Class- B.Pharmacy 2nd Semester
Subject- COMPUTER APPLICATIONS IN PHARMACY (BP205T)

 What is a programming language?
 Why are there so many programming languages?
 What are the types of programming languages?
 Does the world need new languages?

 A programming language is a set of rules that
provides a way of telling a computer what
operations to perform.

 A programming language is a set of rules for
communicating an algorithm

 It provides a linguistic framework for
describing computations

PS — Introduction

A programming language is a notational system for
describing computation in a machine-readable and
human-readable form.

A programming language is a notational system for
describing computation in a machine-readable and
human-readable form.

A programming language is a tool for developing
executable models for a class of problem domains.
A programming language is a tool for developing
executable models for a class of problem domains.

 English is a natural language. It has words,
symbols and grammatical rules.

 A programming language also has words,
symbols and rules of grammar.

 The grammatical rules are called syntax.
 Each programming language has a different set

of syntax rules.

 Why does some people speak French?
 Programming languages have evolved over time as

better ways have been developed to design them.
◦ First programming languages were developed in the

1950s
◦ Since then thousands of languages have been developed

 Different programming languages are designed for
different types of programs.

High-level program class Triangle {
 ...
 float surface()
 return b*h/2;
 }

class Triangle {
 ...
 float surface()
 return b*h/2;
 }

Low-level program LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

Executable Machine code 0001001001000101
0010010011101100
10101101001...

0001001001000101
0010010011101100
10101101001...

 First Generation Languages
 Second Generation Languages
 Third Generation Languages
 Fourth Generation Languages
 Fifth Generation Languages

 Machine language
◦ Operation code – such as addition or subtraction.
◦ Operands – that identify the data to be processed.
◦ Machine language is machine dependent as it is the

only language the computer can understand.
◦ Very efficient code but very difficult to write.

 Assembly languages
◦ Symbolic operation codes replaced binary operation

codes.
◦ Assembly language programs needed to be “assembled”

for execution by the computer. Each assembly language
instruction is translated into one machine language
instruction.
◦ Very efficient code and easier to write.

 Closer to English but included simple
mathematical notation.
◦ Programs written in source code which must be

translated into machine language programs called object
code.
◦ The translation of source code to object code is

accomplished by a machine language system program
called a compiler.

 Alternative to compilation is interpretation which is
accomplished by a system program called an
interpreter.

 Common third generation languages
◦ FORTRAN
◦ COBOL
◦ C and C++
◦ Visual Basic

 A high level language (4GL) that requires fewer
instructions to accomplish a task than a third
generation language.

 Used with databases
◦ Query languages
◦ Report generators
◦ Forms designers
◦ Application generators

 Declarative languages
 Functional(?): Lisp, Scheme, SML
◦ Also called applicative
◦ Everything is a function

 Logic: Prolog
◦ Based on mathematical logic
◦ Rule- or Constraint-based

 Though no clear definition at present, natural
language programs generally can be interpreted
and executed by the computer with no other
action by the user than stating their question.

 Limited capabilities at present.

 Imperative Programming (C)
 Object-Oriented Programming (C++)
 Logic/Declarative Programming (Prolog)
 Functional/Applicative Programming (Lisp)

 Two broad groups
◦ Traditional programming languages

 Sequences of instructions
 First, second and some third generation languages
◦ Object-oriented languages

 Objects are created rather than sequences of instructions
 Some third generation, and fourth and fifth generation

languages

 FORTRAN
◦ FORmula TRANslation.
◦ Developed at IBM in the mid-1950s.
◦ Designed for scientific and mathematical applications by

scientists and engineers.

 COBOL
◦ COmmon Business Oriented Language.
◦ Developed in 1959.
◦ Designed to be common to many different computers.
◦ Typically used for business applications.

 BASIC
◦ Beginner’s All-purpose Symbolic Instruction Code.
◦ Developed at Dartmouth College in mid 1960s.
◦ Developed as a simple language for students to write

programs with which they could interact through
terminals.

 C
◦ Developed by Bell Laboratories in the early 1970s.
◦ Provides control and efficiency of assembly language

while having third generation language features.
◦ Often used for system programs.
◦ UNIX is written in C.

 Simula
◦ First object-oriented language
◦ Developed by Ole Johan Dahl in the 1960s.

 Smalltalk
◦ First purely object-oriented language.
◦ Developed by Xerox in mid-1970s.
◦ Still in use on some computers.

 C++
◦ It is C language with additional features.
◦ Widely used for developing system and application

software.
◦ Graphical user interfaces can be developed easily with

visual programming tools.

 JAVA
◦ An object-oriented language similar to C++ that

eliminates lots of C++’s problematic features
◦ Allows a web page developer to create programs for

applications, called applets that can be used through a
browser.
◦ Objective of JAVA developers is that it be machine,

platform and operating system independent.

 Scripting Languages
◦ JavaScript and VBScript
◦ Php and ASP
◦ Perl and Python

 Command Languages
◦ sh, csh, bash

 Text processing Languages
◦ LaTex, PostScript

 HTML
◦ HyperText Markup Language.
◦ Used on the Internet and the World Wide Web (WWW).
◦ Web page developer puts brief codes called tags in the

page to indicate how the page should be formatted.

 XML
◦ Extensible Markup Language.
◦ A language for defining other languages.

 Programming languages are languages
 When it comes to mechanics of the task,

learning to speak and use a programming
language is in many ways like learning to speak
a human language

 In both kind of languages you have to learn new
vocabulary, syntax and semantics (new words,
sentence structure and meaning)

 And both kind of language require considerable
practice to make perfect.

 Computer languages lack ambiguity and
vagueness

 In English sentences such as I saw the man with a
telescope (Who had the telescope?) or Take a
pinch of salt (How much is a pinch?)

 In a programming language a sentence either
means one thing or it means nothing

 Formerly: Run-time performance
◦ (Computers were more expensive than programmers)

 Now: Life cycle (human) cost is more important
◦ Ease of designing, coding
◦ Debugging
◦ Maintenance
◦ Reusability

 FADS

 Writabil i ty: The quality of a language that enables a
programmer to use it to express a computation clearly,
correctly, concisely, and quickly.

 Readabil i ty: The quality of a language that enables a
programmer to understand and comprehend the nature of a
computation easily and accurately.

 Orthogonality: The quality of a language that features
provided have as few restrictions as possible and be
combinable in any meaningful way.

 Reliabil i ty: The quality of a language that assures a program
will not behave in unexpected or disastrous ways during
execution.

 Maintainabil i ty: The quality of a language that eases errors
can be found and corrected and new features added.

 Generality: The quality of a language that avoids
special cases in the availability or use of constructs and
by combining closely related constructs into a single more
general one.

 Uniformity: The quality of a language that similar
features should look similar and behave similar.

 Extensibi l i ty: The quality of a language that provides
some general mechanism for the user to add new
constructs to a language.

 Standardabil i ty: The quality of a language that allows
programs written to be transported from one computer to
another without significant change in language structure.

 Implementabil i ty: The quality of a language that
provides a translator or interpreter can be written. This
can address to complexity of the language definition.

	FRONT PAGE.pdf
	INTRODUCTION TO PROGAMMING LANGUAGE

